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Violation of scaling in the contact process with quenched disorder
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We study the two-dimensional contact process~CP! with quenched disorder~DCP!, and determine the static
critical exponentsb andn' . The dynamic behavior is incompatible with scaling, as applied to models~such
as the pure CP! that have a continuous phase transition to an absorbing state. We find that the survival
probability ~starting with all sites occupied!, for a finite-size system at the critical point, decays according to a
power law, as does theoff-critical density autocorrelation function. Thus the critical exponentn uu , which
governs the relaxation time, is undefined, since the characteristic relaxation time is itself undefined. The
logarithmic time dependence found in recent simulations of the critical DCP@A. G. Moreira and R. Dickman,
Phys. Rev. E54, R3090 ~1996!# is further evidence of violation of scaling. A simple argument based on
percolation cluster statistics yields a similar logarithmic evolution.@S1063-651X~98!02702-0#

PACS number~s!: 05.50.1q, 02.50.2r, 05.70.Ln
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I. INTRODUCTION

Phase transitions between an absorbing state~one admit-
ting no further evolution!, and an active regime occur i
models of autocatalytic chemical reactions, epidemics,
transport in disordered media@1#. Paradigms of this sort o
transition are the contact process~CP! @2# and its
simultaneous-update counterpart, directed percolation~DP!
@3#. Since many-particle systems often incorporate frozen
randomness, it is natural to investigate the effect of quenc
disorder on an absorbing-state transition. Thus, some y
ago, Noest observed that the critical behavior of disorde
directed percolation is quite different from that of pure D
@4#. We recently studied the CP with quenched disorder
the form of random site dilution, and found logarithmic tim
dependence at the critical point@5#. For example,P(t), the
probability of survival, starting from a single active site, fo
lows P;1/(ln t)a for large t. Such a form is incompatible
with the scaling hypothesis that applies quite generally
absorbing-state transitions@6#. This violation of scaling is
consistent with Janssen’s recent field-theoretic analy
which shows that the resulting renormalization group eq
tions have only runaway solutions@7#. Here we present fur-
ther results bearing on the violation of scaling. In particul
we find that the exponentn uu does not exist for the diluted
contact process~DCP!. We also propose an explanation f
logarithmic behavior at the critical point.

In the CP on the square lattice, each site is either vac
or occupied by a particle. Particles are created at vacant
at rate ln/4, wheren is the number of occupied neare
neighbors, and are annihilated at unit rate, independent o
surrounding configuration. The order parameter is the p
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ticle density r; it vanishes in the vacuum state, which
absorbing. Asl is increased beyondlc51.6488(1), there is
a continuous phase transition from the vacuum to an ac
steady state; forD[l2lc.0, the stationary density
r̄ ;Db. In the vicinity of the critical point the characteristi
relaxation timet;uDu2n uu, and the correlation length di
verges asj;uDu2n'. In the DCP, a fractionx of the sites are
diluted at random, and the birth-and-death process defin
the CP is restricted to nondiluted sites.~Further details on the
DCP may be found in Ref.@5#.!

To provide the necessary background we summarize
scaling behavior of the CP and allied models@6#. Consider
first the evolution from an initial configuration with just
single particle at the origin. The conditional probability
finding a particle atr , given that at time zero there was
particle at the origin, and that all other sites were vaca
obeys

r~r ,t;0,0!.th2dz/2F~r 2/tz,Dt1/n uu!. ~1!

Similarly the survival probability is expected to follow

P~ t !.t2dF~Dt1/n uu!. ~2!

(F and F are scaling functions.! At the critical point
(D50), Eq. ~2! implies P(t);t2d, while Eq. ~1!, when in-
tegrated over space, yields a mean populationn(t);th. If we
take the second moment~in space! of r(r ,t;0,0) with D50,
we obtain

R2~ t !;
th2dz/2

n~ t ! E x2f ~x2/tz!ddx}tz. ~3!

For D.0, the survival probability attains a finite asymptot
value: limt→`P(t)[P`;Db8 @8,9#. Several scaling relations
can be derived, in particular,
1263 © 1998 The American Physical Society
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1264 57RONALD DICKMAN AND ADRIANA G. MOREIRA
z52n' /n uu ~4!

and

d5b/n uu , ~5!

as well as the hyperscaling relation

4d12h5dz. ~6!

Equations~1!–~3! describe spreading from a single see
Consider, on the other hand, a system at the critical po
with all Ld sites initially occupied, and letPm(t) be the
survival probability starting from this maximally occupie
state. At short timesPm51 and the density is governed b
the power lawr(t);t2d. Following this initial phase,Pm
decays exponentially, with a characteristic timet;Ln uu /n',
and the density in thesurvivingsample attains a quasistatio
ary valuers;L2b/n'. The scaling results summarized abo
have been amply confirmed for the CP and other mod
with a unique absorbing configuration, and have been
tended to models possessing multiple absorbing config
tions @9,10#.

In our recent study of the DCP, we found thatP(t), n(t),
andR2(t) display logarithmic time dependence at the critic
point, which is incompatible with the scaling forms, Eqs.~1!
and ~2!, describing the pure model. In this work we repo
further results on static and dynamic critical properties, in
effort to determine the extent of the scaling violation, and
understand its origin. In Sec. II we analyze the station
density~in the supercritical regime!, and the quasistationar
density ~at the critical point!, to obtain estimates ofb and
n' , and also examine the stationary density-density corr
tion function, which decays algebraically. Section III co
cerns the survival probabilityPm starting from a maximally
occupied state; it also decays algebraically, roughly as
dicted by a simple probabilistic picture. Another simple a
gument is presented in Sec. IV, for the logarithmic decay
the survival probability. We conclude, in Sec. V, with a d
cussion of our main results, and of the reason for violation
dynamic scaling in the DCP.

II. STATIC BEHAVIOR

A. Stationary density

We determined the stationary densityr̄ for dilutions
x50.05, 0.1, 0.2, 0.3, and 0.35, by the following simulati
procedure. After generating a disorder configuration on a
tice of L3L sites, and initially occupying all nondilute
sites, we permit the system to relax for a timetR , and then
accumulate data on the density for a period of durationtS .
This process is repeatedNT times~with a new disorder con-
figuration for each trial!, and the densityr(t), computed
over theNS trials that survive up to timetR1tS , is examined
to verify that sufficient time has been allowed for relaxatio
~If not, tR is increased accordingly.! We then take the mea
density for each trial during the observation timetR<t<tS ,
and compute the mean and standard deviation over
sample of NS independent trials. We used lattice siz
L5100, 200, 400, and 800, increasingL as we approached
the critical point, and checking~for L<400) that estimates
.
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for the stationary density agreed for two lattice sizes. T
sample sizeNS ranged from 50 to 100. We employe
tR5tS553104–2.53105, the larger values reflecting slowe
relaxation nearlc(x). @We use the critical point estimate
lc(x) obtained via time-dependent simulations in Ref.@5#.#

Our results for the stationary density, shown in Fig.
reveal a crossover between the DP value ofb.0.58 at small
dilutions (x50.05 and 0.1!, and a larger exponent as on
approacheslc . The data forx>0.1 yield exponents in the
range 0.89–0.98, suggesting thatb50.93(5). ~Figures in pa-
rentheses denote statistical uncertainties — one standard
viation.! We also find thatr2;D2b with 2b51.84(4). Thus
the order parameter exponent agrees, to within uncerta
with our earlier resultb850.99(3) for the exponent govern
ing the ultimate survival probability@5#. ~For the pure CP,
b85b.0.58.! While our estimate is not far from Noest’
result,b51.10(5), we regard it as excluding that value; w
do not feel, however, that our data rule outb51.

B. Quasistationary density

Rather than studying spatial correlations directly, we d
terminen' by analyzing the quasistationary densityrs at the
critical point as a function of the system size; this yiel
b/n' , as noted in Sec. I. We studied lattice sizes vary
from L58 to L5128, averaging over 23103 to 105 inde-
pendent runs, of durationts5103 to ts5105. ~The larger
sample sizes and longer run times apply to the largerL val-
ues.! We show in Fig. 2 a log-log plot ofrs(lc ,L) versusL
for dilutions ranging from 0.02 to 0.35, along with the slop
of linear least-squares fits to the data forL>16. ~The uncer-
tainty in the slope ranges from 1 to 3%.! For x,0.1, the
scaling of rs is similar to that found in the pure CP, fo
which b/n'50.80(3). But for larger dilutions we see a
steady increase in the slope; we estimateb/n'50.93(3) for
the DCP. Combining this with our estimateb50.93(5), we
obtainn'51.00(9) for the DCP. This is lower than, but sti
consistent with, Noest’s earlier estimate of 1.17~10! @4#. On
the other hand, a theorem of Chayeset al. requiresdn'>2
for models with quenched disorder, orn'>1 here@11#; the

FIG. 1. Stationary densityr vs D[l2lc in the diluted contact
process.3: x50.05; j: x50.10; s: x50.20; h: x50.30; d:
x50.35. Figures denote the slopes of the various straight lines
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57 1265VIOLATION OF SCALING IN THE CONTACT PROCESS . . .
upper range of our estimate is consistent with this resu
@Note that if we use our earlier estimate,b850.99(3) in
place of ourb value, we obtainn'51.06(7).#

C. Stationary density-density correlation function

The stationary density-density correlation function is de
fined by

C~ t !5^s i~ t01t !s i~ t0!&, ~7!

wheres i(t)51 ~0! if site i is occupied~vacant! at time t,
and the average is over realizations of the processand over
disorder. It is understood thatt0 is sufficiently large that the
right-hand side~rhs! is independent oft0. For the undiluted
CP, the rhs is then independent ofi as well, and
DC[C(t)2 r̄ 2;exp(2t/t) for large t. t is a characteristic
relaxation time diverging ast;D2n uu near the critical point.

We studied the density-density correlation function in th
DCP atx50.1 and 0.3, evaluating the rhs of Eq.~7! for a
single site i ~the first nondiluted site to be generated!, on
L3L lattices with periodic boundaries, using 500–2000 in
dependent realizations of the disorder. Figure 3~inset! shows
a typical evolution, withC(t) slowly approaching an asymp-
tote, C` . The main graph shows that the exces
DC[C(t)2C`;t2b, so it cannot be characterized by a re
laxation time. The exponentb varies from about 0.7 to 0.8
well abovelc , to about 0.5 nearlc . Note that forb<1,
even the alternative expression

t[E
0

`

dtDC~ t !, ~8!

similar to that employed by Noest, is undefined. We als
observe a power-law approach~with an exponent of about

FIG. 2. Quasistationary densityrs(lc ,L) vs L, for dilutions
x50.02 ~j!; 0.05 (n); 0.10 (3); 0.20 (s); 0.30 (L), and 0.35
(h). The lines are linear fits to the last four data points in each s
figures indicate the slope.
lt.
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,

o

1/2! of the critical quasistationary densityrs , discussed in
the preceding subsection, to its asymptotic value.

III. DYNAMIC BEHAVIOR

Consider the pure CP on a lattice ofLd sites, starting with
all sites occupied. Since we are dealing with a finite syste
there is a well-defined lifetimet(D,L) and the survival prob-
ability Pm(t)}exp@2t/t(D,L)# for large t. Just at the critical
point the lifetime has a power-law dependence onL:
t(0,L);Ln uu /n'. For D.0, vacating (L/j)d independent re-
gions simultaneously is an exponentially rare event, and
expect the scaling form

t~D,L !;Ln uu /n'exp@c~LDn'!d# ~9!

~c is a constant!, as is confirmed by the data shown in Fig.
~The data also appear to scale forD,0, but with a different
scaling function.!

t;

FIG. 3. Main graph: excess density-density correlation funct
vs time in the DCP forx50.3 andl52.60~top!, 2.70~middle!, and
2.47 ~bottom!. The inset showsC versust for x50.3 andl52.70.

FIG. 4. Semilogarithmic scaling plot of the lifetime in thepure
CP. Squares:uDu50.01; diamonds:uDu50.02; d: uDu50.05.
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1266 57RONALD DICKMAN AND ADRIANA G. MOREIRA
We studied the relaxation from a maximally occupi
state~all nondiluted sites occupied! in the critical DCP. Fig-
ures 5 and 6 showPm(t) for x50.1 and 0.3, respectively, fo
L532, 64, and 128.~We studied samples of 5000, 2000, a
1000 trials forL532, 64, and 128, respectively! From the
figures it appears that following the initial stage, the survi
probability crosses over to anonuniversalpower law, with
an exponent that decreases withx and with L. ~For x50.1
we find Pm;t2a with a51.8, 1.1, and 0.86 forL532, 64,
and 128, respectively; forx50.3 the corresponding power
are 0.71, 0.55, and 0.37.! Since the asymptotic decay ofPm
is nonexponential, there is no characteristic lifetime for
process. The initial stage, during whichPm51, is character-
ized by a correlation lengthj(t),L. During this phase we
find nm;t2d with d.0.47, as for the pure model. OncePm
starts to decay,nm crosses over to a different, nonunivers
power law, as seen in Fig. 7.

While the Pm data are certainly inconsistent with exp
nential decay, a slight downward curvature suggests a fa
than power-law decay. In fact, somewhat more linear p
are obtained using the form lnPm}2(ln t)a, with a in the
range 1.5–3 depending on the data set. The data are
noisy to permit a definite conclusion regarding the form

FIG. 5. Survival probabilityPm versus time in the critical DCP
starting from a maximally occupied state, for dilutionx50.1 and
l5lc51.8464.1: L532; s: L564; L: L5128.

FIG. 6. Same as Fig. 5, but forx50.3, l5lc52.47.
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Pm , but it is interesting that a simple argument yields t
modified power law. Because of fluctuations, the actual fr
tion of diluted sites in a given sample differs fromx by dx,
which is a Gaussian random variable with mean zero
variancex(12x)/Ld, by the central limit theorem. If we now
ignore the spatial inhomogeneity of the disorder, and asc
the effective distance from criticality,D, of a sample to the
fluctuationdx, we find thatD is likewise Gaussian:

P~D!;exp~2bLdD2!, ~10!

with

b2152x~12x!S dlc

dx D 2

. ~11!

If we assume that the lifetimet(D,L) scales as in the pure
model, Eq.~9!, the survival probability is given by

Pm~ t !;E dDexpS 2bLdD22
t

t~D,L ! D . ~12!

Maximizing the argument of the exponential to extract t
leading behavior at larget, we obtain

ln Pm;2bLd2 2/n'~ ln t̃ !2/dn', ~13!

where t̃ [t/(bLn uu /n'). @The exponent 2/dn'.1.37 for
d52. To evaluate the rhs of Eq.~13! we requiredlc /dx;
from the data reported in Ref.@5#, we obtain values of 2.256
and 4.393 forx50.1 andx50.3, respectively.# In Fig. 8 we
test the scaling prediction by plotting (L2/n'22/b)ln Pm ver-
sus (ln t̃ )1/n'. For x50.3 the data collapse for differentL
values is quite good. Forx50.1 the data do not collapse, bu
Eq. ~13! nevertheless appears to account for much of thL
dependence. Thex dependence ofPm , by contrast, is not
predicted correctly by the scaling argument.@The reason for
this is unclear, though one may speculate that the factorc in
Eq. ~9! depends uponx in some unknown manner.#

Our estimate forPm(t), which treats fluctuations in the
disorder as if they were spatially homogeneous, and u
pure-model scaling, is clearly inadequate to deal with
true subtlety of the DCP. That it may yet contain some ge

FIG. 7. Mean number of particlesnm in the critical DCP with
x50.3. Symbols as in Fig. 5.
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of truth is suggested by our finding that when we do n
average over disorder, the decay ofPm is exponential, as in
the pure CP, but with a lifetime particular to the disorder
generated.~One is naturally interested in knowing the dist
bution of the relaxation time. This poses a formidable n
merical task that we hope to address in future work.! In
summary, the relaxation of the DCP from a maximally o
cupied state is similar to that of the pure model during
initial stage, in which correlations have yet to grow to t
size of the system. But afterward the evolution follows no
universal power laws~or modified power laws! and we can-
not define a characteristic lifetime.

IV. CRITICAL DYNAMICS

In this section we propose a simple explanation for h
logarithmic time dependence arises in the critical DCP. C
sider the survival probabilityP(t) starting from a single oc-
cupied site or seed located at the origin,O. Clearly, the trials
that contribute toP(t) at larget are those in which the see
happens to fall in a large, favorable region. To make
notion of a ‘‘favorable region’’ somewhat more precis
imagine taking the disorder configuration on a cube ofLd

sites, filling space with periodic copies, and running the c
tact process withl5lc(x) on this lattice. For some disorde
configurations — the favorable ones — the process will
fact besupercritical, because the fraction of diluted sites
,x, or because of a particularly advantageous arrangem
of the diluted sites. Such regions are characterized by
‘‘effective distance from criticality’’Deff.0. Any disorder
configuration contains both favorable and unfavorable
gions. If the seed lies in a favorable region, we can define
‘‘domain’’ as the maximal connected favorable region co
taining O. ~The domain is surrounded by unfavorable r

FIG. 8. ~a! Scaling plot of the data of Fig. 5 (x50.1); ~b! Scal-
ing plot of the data of Fig. 6 (x50.3). r 51/n'51.37;

s5222/n'50.74; t̃ is defined in the text. Symbols as in Fig. 5
t
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gions, which impede the spread of the process.! For simplic-
ity, we suppose that on a domain ofV sites, having some
Deff.0, the DCP has a lifetimet;exp@cVDeff

dn'#, as it would
on a compact region, in the pure model. From the cen
limit theorem, the typical value ofDeff on a domain ofV
sites;V21/2, yielding a lifetimet;exp@cV12dn'/2#. At time
t, only trials whose seeds happen to fall in a domain w
t>t, or V>c8(ln t)2/(22dn') survive.

It remains to estimate the probabilityp(V) thatO belongs
to a domain ofV sites. To do this, note that a domain is
kind of percolation cluster. The precise definition of the si
in this percolation problem is unclear~we might imagine
averaging over small blocks of sites in the original lattice!, as
is the connectivity rule~next-nearest-neighbor blocks, for ex
ample, might effectively be connected!. But we should ex-
pect the associated percolation model to be isotropic an
finite range. Moreover, domain percolation must becritical
at lc(x). If it were supercritical, the contact process wou
be able to spread into an unbounded domain, and so w
itself be supercritical. Similarly, if domains were subcritica
their size distribution would decay exponentially, and the
would be subcritical. At the critical point, the domain size
power-law distributed:p(V);V2(tp21) for largeV, with tp
the usual percolation cluster-size exponent (tp5187/91 in
two dimensions!. Combining this result with the lifetime es
timate, we have

P~ t !;E
c8~ ln t !2/~22dn'!

dV

Vtp21
;~ ln t !22~tp22!/~22dn'!.

~14!

As in the argument~Sec. III! for the survival probability
starting from a maximally occupied state, the effect of inh
mogeneity in the disorder is greatly oversimplified. Inserti
the known values of n' and of tp , we obtain
P(t);(ln t)20.2, whereas the exponent we observed in sim
lations @5# is much larger, andnonuniversal,ranging from
about 2.7 atx50.35 to 4.6 atx50.1. Thus we offer the
above argument without any claim of quantitative validit
but rather to show how a simple treatment of disorder le
naturally to logarithmic time dependence, and in the ho
that it may form the basis for a more convincing approac

The probabilistic arguments suggest that it may be p
sible to understand how anomalous dynamics arises from
average over disorder. Here it is important to recall Noes
analysis of contributions from exponentially rare, favorab
disorder configurations to the survival probabilityP(t). By
deriving upper and lower bounds on the survival probabili
he was able to prove power-law decay ofP(t) in a Griffiths
phase forlc(x).l.lc(0) @12#. Arguments of a somewha
similar nature were advanced by Bray in his discussion
the relaxation of diluted spin models@13#.

V. DISCUSSION

We have found that some aspects of the diluted con
process exhibit the same sort of critical behavior — alb
with different exponents — as seen in the pure model. Ot
features — spreading from a seed, the density-density a
correlation functionC(t) and the survival probabilityPm(t),
starting from a maximally occupied state—do not follow t
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1268 57RONALD DICKMAN AND ADRIANA G. MOREIRA
usual scaling, and are nonuniversal. The anomalous pro
ties are all connected with dynamics: normally,C(t) and
Pm(t) decay exponentially, with the diverging lifetime ser
ing to define the exponentn uu through t;D2n uu. Here no
such definition is possible. Consistent with this, the spre
ing exponentsd, z, andh, which are formally zero, are con
nected ton uu via the scaling relations Eqs.~4!–~6!. Sinceb
andn' are in fact finite, Eqs.~4! and ~5! suggest thatn uu is
infinite. Given Janssen’s recent results@7#, it is of interest to
know whether our finding of power-law static behavior, b
anomalous time dependence, is compatible with a fie
theoretical analysis.

Some insight into the violation of dynamic scaling may
gained by returning to Eq.~9!: the exponential dependenc
of the lifetime ~in the pure CP! upon L and D suggests an
extreme sensitivity of dynamic behavior to disorder. W
might expect dynamics to be dominated by the extreme
local fluctuations in the disorder. The result is that a prope
such as the relaxation timet for the density-density autocor
e

at
er-

-

t
-

of
y

relation function isnon-self-averaging, i.e., it does not con-
verge to a limiting value even asL→` @14,15#. Another
manifestation of non-self-averaging is the dependence
P(t) andn(t), even at long times, on the location of the se
at time zero. These features are dominated by local fluc
tions, rather than by the properties of a ‘‘typical’’ disord
configuration. This in turn suggests that further insight m
be gained by studying critical behavior forfixed disorder
configurations, in order to determine the statistical distrib
tions of various system properties, and of the domains
fined in Sec. IV. In this way the primitive probabilistic argu
ments forPm and P(t) could be honed into a quantitativ
description of how anomalous behavior emerges in the a
age over disorder.
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