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Violation of scaling in the contact process with quenched disorder
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We study the two-dimensional contact proc&SP) with quenched disorddDCP), and determine the static
critical exponents3 andv, . The dynamic behavior is incompatible with scaling, as applied to mddeth
as the pure CPthat have a continuous phase transition to an absorbing state. We find that the survival
probability (starting with all sites occupiegdfor a finite-size system at the critical point, decays according to a
power law, as does theff-critical density autocorrelation function. Thus the critical expongnt which
governs the relaxation time, is undefined, since the characteristic relaxation time is itself undefined. The
logarithmic time dependence found in recent simulations of the critical PXCI&. Moreira and R. Dickman,
Phys. Rev. E54, R3090(1996)] is further evidence of violation of scaling. A simple argument based on
percolation cluster statistics yields a similar logarithmic evolutj&@1.063-651X%98)02702-0

PACS numbds): 05.50+4q, 02.50--r, 05.70.Ln

I. INTRODUCTION ticle density p; it vanishes in the vacuum state, which is
absorbing. As\ is increased beyond.=1.64881), there is
Phase transitions between an absorbing tate admit- a continuous phase transition from the vacuum to an active
ting no further evolution and an active regime occur in steady state; forA=\N—\;>0, the stationary density
models of autocatalytic chemical reactions, epidemics, ang~A”. In the vicinity of the critical point the characteristic
transport in disordered medjd]. Paradigms of this sort of relaxation timer~|A| "I, and the correlation length di-
transition are the contact proces&CP) [2] and its verges ag~|A|~"L. Inthe DCP, a fractiox of the sites are
simultaneous-update counterpart, directed percolafizip) diluted at random, and the birth-and-death process defining
[3]. Since many-particle systems often incorporate frozen-irithe CP is restricted to nondiluted sitéSurther details on the
randomness, it is natural to investigate the effect of quenche@CP may be found in Ref5].)
disorder on an absorbing-state transition. Thus, some years To provide the necessary background we summarize the
ago, Noest observed that the critical behavior of disorderedcaling behavior of the CP and allied modgtg. Consider
directed percolation is quite different from that of pure DPfirst the evolution from an initial configuration with just a
[4]. We recently studied the CP with quenched disorder irsingle particle at the origin. The conditional probability of
the form of random site dilution, and found logarithmic time finding a particle atr, given that at time zero there was a
dependence at the critical poiffi]. For exampleP(t), the particle at the origin, and that all other sites were vacant,
probability of survival, starting from a single active site, fol- obeys
lows P~1/(Int)® for large t. Such a form is incompatible
with the scaling hypothesis that applies quite generally to p(r,t;0,00=t7"922F (r2/t*, At'). )
absorbing-state transitior{§]. This violation of scaling is ) o
consistent with Janssen’s recent field-theoretic analysissimilarly the survival probability is expected to follow
which shows that the resulting renormalization group equa- s ”
tions have only runaway solutiong]. Here we present fur- P()=t" O (At™"I). )
ther results bearing on the violation of scaling. In particular, ) . . )
we find that the exponent; does not exist for the diluted (F and @ are scaling funct?g};.A_t the critical point
contact proceséDCP). We also propose an explanation for (A=0), Eq.(2) implies P(t)~t", while Eq. (1), when in-
logarithmic behavior at the critical point. tegrated over space, yle_lds amean populam@bljt”. If we
In the CP on the square lattice, each site is either vacarigke the second momefin spacg of p(r,t;0,0) with A=0,
or occupied by a particle. Particles are created at vacant sitd¥ée obtain
at rate A\n/4, wheren is the number of occupied nearest
neighbors, and are annihilated at unit rate, independent of the R2(t)~
surrounding configuration. The order parameter is the par- n(t)

n—dz2
x2f (x2/t%) dxoct?. ®)

For A>0, the survival probability attains a finite asymptotic

*Electronic address: dickman@Icvax.lehman.cuny.edu value: lim_.P(t)= P.~AF [8,9]. Several scaling relations
Electronic address: dri@fisica.ufmg.br can be derived, in particular,
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z=2v, Iy (4) -7 T ————
and
2 r
o=pBlv, (5) I
as well as the hyperscaling relation "
£ a3
45+2n=dz (6)
Equations(1)—(3) describe spreading from a single seed. i
Consider, on the other hand, a system at the critical point, -4
with all LY sites initially occupied, and leP,(t) be the
survival probability starting from this maximally occupied
state. At short time®,,=1 and the density is governed by -5
the power lawp(t)~t~°. Following this initial phaseP,, -6 -5 -4 -3 2 -1
decays exponentially, with a characteristic time L"II/":, Ino

and the density in theurvivingsample attains a quasistation-
ary valuep~L ~#'". The scaling results summarized above
have been amply confirmed for the CP and other model8
with a unique absorbing configuration, and have been ex:

tended to models possessing multiple absorbing configura-
tions [9,10]. P ¢ P ¢ ¢ é}or the stationary density agreed for two lattice sizes. The

In our recent study of the DCP, we found tht), n(t), sample sizeNg ranged from 50 to 100. We _employed
andR2(t) display logarithmic time dependence at the critical 'R ™ {s= 2 10'-2.5<10", the larger values reflecting slower
point, which is incompatible with the scaling forms, E¢B. relaxation .neamc_(x).. [We use the crltlcal .pomt. estimates
and (2), describing the pure model. In this work we report Mc(X) obtained via time-dependent simulations in R&j.]
further results on static and dynamic critical properties, in an OUr results for the stationary density, shown in Fig. 1,
effort to determine the extent of the scaling violation, and to'€Veal a crossover between the DP valu@ef0.58 at small
understand its origin. In Sec. Il we analyze the stationanfilutions (x=0.05 and 0.1 and a larger exponent as one
density (in the supercritical regimeand the quasistationary aPProaches... The data forx=0.1 yield exponents in the
density (at the critical poink, to obtain estimates o8 and ~ 'ange 0.89-0.98, suggesting tiat 0.935). (Figures in pa-

v, , and also examine the stationary density-density correld€ntheses denote statistical uncertainties — one standard de-
tion function, which decays algebraically. Section Il con- Viation) We also find thap®~ A% with 28=1.844). Thus
cerns the survival probabilit@,,, starting from a maximally the order parameter exponent agrees, to within uncertainty,
occupied state; it also decays algebraically, roughly as predith our earlier resulg’=0.99(3) for the exponent govern-
dicted by a simple probabilistic picture. Another simple ar-ing the ultimate survival probability5]. (For the pure CP,
gument is presented in Sec. IV, for the logarithmic decay of8’ =8=0.58) While our estimate is not far from Noest's
the survival probability. We conclude, in Sec. V, with a dis- result, 3=1.10(5), weregard it as excluding that value; we
cussion of our main results, and of the reason for violation oflo not feel, however, that our data rule gg#1.

dynamic scaling in the DCP.

FIG. 1. Stationary density vs A=\ —\. in the diluted contact
rocess.X: x=0.05; B: x=0.10; O: x=0.20; O: x=0.30; @:
=0.35. Figures denote the slopes of the various straight lines.

B. Quasistationary density

Il. STATIC BEHAVIOR Rather than studying spatial correlations directly, we de-
terminev, by analyzing the quasistationary dengityat the
o critical point as a function of the system size; this yields
We determined the stationary densigy for dilutions  B/v,, as noted in Sec. |. We studied lattice sizes varying
x=0.05, 0.1, 0.2, 0.3, and 0.35, by the following simulationfrom L=8 to L=128, averaging over 10° to 1¢° inde-
procedure. After generating a disorder configuration on a latpendent runs, of duration,=10° to t;=1C. (The larger
tice of LXL sites, and initially occupying all nondiluted sample sizes and longer run times apply to the latgeal-
sites, we permit the system to relax for a tigg and then ues) We show in Fig 2 a log-log plot ofpg(\¢,L) versusL
accumulate data on the density for a period of duration  for dilutions ranging from 0.02 to 0.35, along with the slopes
This process is repeatéd times (with a new disorder con- of linear least-squares fits to the data for 16. (The uncer-
figuration for each trig| and the densityp(t), computed tainty in the slope ranges from 1 to 3p&-or x<0.1, the
over theNg trials that survive up to times+tg, is examined scaling of pg is similar to that found in the pure CP, for
to verify that sufficient time has been allowed for relaxation.which g/v, =0.80(3). But for larger dilutions we see a
(If not, tg is increased accordinglyWe then take the mean steady increase in the slope; we estim@ate, =0.93(3) for
density for each trial during the observation tilmgst<tg, the DCP. Combining this with our estimg=0.935), we
and compute the mean and standard deviation over thebtainy, =1.00(9) for the DCP. This is lower than, but still
sample of Ng independent trials. We used lattice sizesconsistent with, Noest's earlier estimate of ¥10J [4]. On
L=100, 200, 400, and 800, increasihgas we approached the other hand, a theorem of Chaysal. requiresdv, =2
the critical point, and checkin¢for L<400) that estimates for models with quenched disorder, or =1 here[11]; the

A. Stationary density
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FIG. 3. Main graph: excess density-density correlation function
InL vs time in the DCP fox=0.3 and\ = 2.60(top), 2.70(middle), and
2.47 (bottom. The inset show€ versust for x=0.3 and\ =2.70.
FIG. 2. Quasistationary densitys(\.,L) vs L, for dilutions
x=0.02 (M); 0.05 (A); 0.10 (x); 0.20 (O); 0.30 (¢ ), and 0.35  1/2) of the critical quasistationary densipy, discussed in
(0O). The lines are linear fits to the last four data points in each setthe preceding subsection, to its asymptotic value.
figures indicate the slope.

. _ . . . . DYNAMIC BEHAVIOR
upper range of our estimate is consistent with this result.

[Note that if we use our earlier estimatg/ =0.99(3) in Consider the pure CP on a latticeldt sites, starting with
place of ourB value, we obtairnv, =1.067).] all sites occupied. Since we are dealing with a finite system,

there is a well-defined lifetime(A,L) and the survival prob-

C. Stationary density-density correlation function ability Pp(t)~exd —t/7(A,L)] for larget. Just at the critical

] ) ) ] o point the lifetime has a power-law dependence bbn
The stationary density-density correlation function is de-T(O,L)NLvH/VL' For A>0, vacating [/£)® independent re-

fined by gions simultaneously is an exponentially rare event, and we
Ct)=(oi(to+1)oi(to)), @) expect the scaling form
7(A,L)~L" " exf c(LA)9] (9)

where o;(t)=1 (0) if site i is occupied(vacanj at timet,

and the average is over realizations of the proeagsbover (c is a constant as is confirmed by the data shown in Fig. 4.

disorder. It is understood th§ is sufficiently large that the The data also appear to scale for 0. but with a different
right-hand sidgrhs) is independent of,. For the undiluted Ec,caling functiompp ’

CP, the rhs is then independent of as well, and
AC=C(t)— p’~exp(-t/7) for larget. 7 is a characteristic
relaxation time diverging as~ A~ "Il near the critical point. o S L ]
We studied the density-density correlation function in the ! o
DCP atx=0.1 and 0.3, evaluating the rhs of ET) for a
single site i (the first nondiluted site to be generatedn
L XL lattices with periodic boundaries, using 500—2000 in-
dependent realizations of the disorder. Figuf@m3e) shows
a typical evolution, withC(t) slowly approaching an asymp- [ ]
tote, C,. The main graph shows that the excess, 4 - /. -
AC=C(t)—C.~t"®, so it cannot be characterized by a re- ]
laxation time. The exponet varies from about 0.7 to 0.8 - o .
well above)., to about 0.5 neak.. Note that forb<1, [
even the alternative expression 2r

In(r /L")

= jwthC(t), (8) -8 -4 0 4 8
0 (LAYL)?

similar to that employed by Noest, is undefined. We also FIG. 4. Semilogarithmic scaling plot of the lifetime in tpere
observe a power-law approacith an exponent of about CP. Squares:A|=0.01; diamonds}A|=0.02; ®: |A|=0.05.
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FIG. 5. Survival probabilityP,, versus time in the critical DCP FIG. 7. Mean number of particles,, in the critical DCP with
starting from a maximally occupied state, for dilutiar-0.1 and  y_ 3. Symhbols as in Fig. 5.

A=A.=1.8464.+:L=32;0:L=64; ¢:L=128.
] ] ] P, but it is interesting that a simple argument yields the

We studied the relaxation from a maximally occupied mogified power law. Because of fluctuations, the actual frac-
state(all nondiluted sites occupigdn the critical DCP. Fig-  tjon of diluted sites in a given sample differs fromby dx,
ures 5 and 6 show (t) for x=0.1 and 0.3, respectively, for \yhjch is a Gaussian random variable with mean zero and
L=32, 64, and 128 We studied samples of 5000, 2000, and\ariancex(1—x)/L¢, by the central limit theorem. If we now
1000 trials forL=32, 64, and 128, respectivelffrom the  jgnore the spatial inhomogeneity of the disorder, and ascribe
figures it appears that following the initial stage, the survivalihe effective distance from criticality), of a sample to the

probability crosses over to monuniversalpower law, with fluctuationdx, we find thatA is likewise Gaussian:
an exponent that decreases wittand withL. (For x=0.1

we find P,~t~2 with a=1.8, 1.1, and 0.86 foL. =32, 64, P(A)~exq—deA2), (10
and 128, respectively; fax=0.3 the corresponding powers

are 0.71, 0.55, and 0.37Since the asymptotic decay 8,  With

is nonexponential, there is no characteristic lifetime for the ) 2

process. The initial stage, during whié,=1, is character- b‘1=2x(1—x)(—°) ) (11)
ized by a correlation lengtlj(t)<L. During this phase we dx

find n,~t~° with 6=0.47, as for the pure model. Onéxg,
starts to decayn,, crosses over to a different, nonuniversal
power law, as seen in Fig. 7.

While the P,,, data are certainly inconsistent with expo-
nential decay, a slight downward curvature suggests a faster Pm(t)~f dAexp{ —bLIAZ-
than power-law decay. In fact, somewhat more linear plots
are obtained using the form Py—(Int)?, with a in the  Maximizing the argument of the exponential to extract the
range 1.5-3 depending on the data set. The data are t9@,ging behavior at large we obtain
noisy to permit a definite conclusion regarding the form of

If we assume that the lifetime(A,L) scales as in the pure
model, Eq.(9), the survival probability is given by

. (12

7(A,L)

In Py~ —bL9™ 27i(In T)2Mdr. (13

where t=t/(bL”I’"1). [The exponent 2y, =1.37 for
i d=2. To evaluate the rhs of E¢13) we required\./dXx;
from the data reported in Rdf5], we obtain values of 2.256
and 4.393 fox=0.1 andx=0.3, respectively.In Fig. 8 we
test the scaling prediction by plotting ¥”: ~2/b)In P,, ver-

sus (Int)Y"1. For x=0.3 the data collapse for different
values is quite good. For=0.1 the data do not collapse, but
Eqg. (13) nevertheless appears to account for much oflthe
", dependence. The dependence oP,,, by contrast, is not
30 | ++ 8 predicted correctly by the scaling argumgrithe reason for
i this is unclear, though one may speculate that the factor
Eq. (9) depends upom in some unknown manner.

Our estimate forP(t), which treats fluctuations in the

Int disorder as if they were spatially homogeneous, and uses
pure-model scaling, is clearly inadequate to deal with the

FIG. 6. Same as Fig. 5, but far=0.3, A\ =\.=2.47. true subtlety of the DCP. That it may yet contain some germ
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0 T T T T gions, which impede the spread of the progeBer simplic-
I Sy I ity, we suppose that on a domain ¥f sites, having some
20 ey @ 4 ifeti dv i
RS ey, | A >0, the DCP has a lifetime~exdcVA_.*], as it would
o 00 s eff . . eff
40 - o 0 o *++++ = on a compact region, in the pure model. From the central
<>O<><> OOooo *++++ 1 limit theorem, the typical value oA ; on a domain ofV
60 [ O%% %o e, ] sites~V 12 yielding a lifetime 7~ exg c\VA~%2/2]. At time
L X A t, only trials whose seeds happen to fall in a domain with
-850 % Y 2/(2—dv,) PP
c %, : 7=t, orV=c'(Int) Y1) survive.
o -100 ! o It remains to estimate the probabilipfV) thatO belongs
E 2 6 10 14 to a domain ofV sites. To do this, note that a domain is a
2 4 kind of percolation cluster. The precise definition of the sites
) 1 in this percolation problem is uncledgwe might imagine
) | averaging over small blocks of sites in the original laftices
-100 _ ging over : _ g
is the connectivity rulénext-nearest-neighbor blocks, for ex-
i ample, might effectively be connecjedBut we should ex-
-200 . ) . :
pect the associated percolation model to be isotropic and of
o finite range. Moreover, domain percolation mustdsitical
-300 *+ . -,
I Fry at \.(x). If it were supercritical, the contact process would
C - -
400 N be able to spread into an unbounded domain, and so would

itself be supercritical. Similarly, if domains were subcritical,
their size distribution would decay exponentially, and the CP
would be subcritical. At the critical point, the domain size is
_ _ power-law distributedp(V)~V~("»~1) for largeV, with 7,
FIG. 8. (& Scaling plot of the data of Fig. 5(=0.1); (b) Scal- - the ysual percolation cluster-size exponeng=187/91 in

ing plot of the data of Fig. 6 X=0.3). r=1/v, =137 {4 dimensions Combining this result with the lifetime es-
s=2-2/v, =0.74; t is defined in the text. Symbols as in Fig. 5. timate, we have

(In¥y

""(ln t)—2(7p—2)/(2—dvl).

of truth is suggested by our finding that when we do not dv
average over disorder, the decayRy, is exponentiaglas in P(t)~J

the pure CP, but with a lifetime particular to the disorder set ¢
generated(One is naturally interested in knowing the distri- (14
bution of the relaxation time. This poses a formidable nu-as in the argumen{Sec. Il for the survival probability
merical task that we hope to address in future Wolk.  starting from a maximally occupied state, the effect of inho-
summary, the relaxation of the DCP from a maximally oc-mogeneity in the disorder is greatly oversimplified. Inserting
cupied state is similar to that of the pure model during thehe * known values of », and of 7,, we obtain
initial stage, in which correlations have yet to grow to thep(t)—(in t)=°2 whereas the exponent wepobserved in simu-
size of the system. But afterward the evolution follows non-jations 5] is much larger, andonuniversal,ranging from
universal power lawgor modified power lawsand we can-  gpout 2.7 atx=0.35 to 4.6 atx=0.1. Thus we offer the

’(|I"I t)2/(2*dVL)VTp*l

not define a characteristic lifetime. above argument without any claim of quantitative validity,
but rather to show how a simple treatment of disorder leads
IV. CRITICAL DYNAMICS naturally to logarithmic time dependence, and in the hope

) . ) that it may form the basis for a more convincing approach.

In this section we propose a simple explanation for how The probabilistic arguments suggest that it may be pos-
logarithmic time dependence arises in the critical DCP. Consjple to understand how anomalous dynamics arises from an
sider the survival probability(t) starting from a single oc- average over disorder. Here it is important to recall Noest's
cupied site or seed located at the origih,Clearly, the trials  analysis of contributions from exponentially rare, favorable
that contribute tdP(t) at larget are those in which the seed disorder configurations to the survival probabil(t). By
happens to fall in a large, favorable region. To make thejeriving upper and lower bounds on the survival probability,
notion of a “favorable region” somewhat more precise, he was able to prove power-law decayRyft) in a Griffiths
imagine taking the disorder configuration on a cubel 8f phase for .(X)>\>\(0) [12]. Arguments of a somewhat
sites, filling space with periodic copies, and running the consimilar nature were advanced by Bray in his discussion of
tact process with =\ .(x) on this lattice. For some disorder the relaxation of diluted spin mode]&3].
configurations — the favorable ones — the process will in
fact besupercritical because the fraction of diluted sites is V. DISCUSSION
<X, or because of a particularly advantageous arrangement
of the diluted sites. Such regions are characterized by an We have found that some aspects of the diluted contact
“effective distance from criticality” A;+>0. Any disorder process exhibit the same sort of critical behavior — albeit
configuration contains both favorable and unfavorable rewith different exponents — as seen in the pure model. Other
gions. If the seed lies in a favorable region, we can define itfeatures — spreading from a seed, the density-density auto-
“domain” as the maximal connected favorable region con-correlation functiorC(t) and the survival probability (t),
taining O. (The domain is surrounded by unfavorable re-starting from a maximally occupied state—do not follow the
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usual scaling, and are nonuniversal. The anomalous properelation function isnon-self-averagingi.e., it does not con-
ties are all connected with dynamics: normaly(t) and verge to a limiting value even ds—~ [14,15. Another
Pm(t) decay exponentially, with the diverging lifetime serv- manifestation of non-self-averaging is the dependence of
ing to define the exponen through ~~A~"I. Here no  P(t) andn(t), even at long times, on the location of the seed
such definition is possible. Consistent with this, the spreadat time zero. These features are dominated by local fluctua-
ing exponents, z, and 77, which are formally zero, are con- tjons, rather than by the properties of a “typical” disorder
nected toy via the scaling relations Eq$4)—(6). Since  configuration. This in turn suggests that further insight may
andv, are in fact finite, Eqs(4) and (5) suggest that| is  pe gained by studying critical behavior féixed disorder
infinite. Given Janssen’s recent result3, it is of interest to  configurations, in order to determine the statistical distribu-
know whether our flndlng of powel’—laW static behaVior, buttions of various System propertiesi and of the domains de-
anomalous time dependence, is compatible with a fieldfined in Sec. IV. In this way the primitive probabilistic argu-
theoretical analysis. ments forP,, and P(t) could be honed into a quantitative

Some insight into the violation of dynamic scaling may bedescription of how anomalous behavior emerges in the aver-
gained by returning to Ec(9): the exponential dependence age over disorder.

of the lifetime (in the pure CPuponL and A suggests an

extreme sensitivity of dynamic behavior to disorder. We

might expect dynamics to be dominated by the extremes of ACKNOWLEDGMENT
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